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Abstract 

The analysis at nano-scale is important for the modeling of plastic deformation and its structures. We reviewed 

algorithms at nano-scale using FEM and presented a solution for modeling of such processes and corresponding 

algorithms. Also, we studied dislocations and avalanches in the deformed body, how they affect the quality, and 

methods to decrease their affluence on the product. For meshing of the model proposed method is to relate particle 

size and mechanical properties, which is investigated in the context of plastic deformation. Damage models 

presented in the paper can be proved useful for the production modeling and manufacturing. Modeling of buckling 

and plastic deformation proved to be useful to study the phenomenon and can be optimized with the proposed 

methods. Numerical verification using test benchmarks were conducted to demonstrate flange buckling, its particle 

measurements, and avalanches in the deformed part to validate propositions. 
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1. Overview 

One of the basic observations of material science is the existence of a well-defined yield stress. We study by 

simulation, in three dimensions, plastic deformation of nano-scale objects under stress.  In this contribution, we 

propose a method for alleviating problems with unknown factors affecting mesh for damage formulations. It makes 

it possible to construct predictable models employing CAD software for structural investigations and optimizations 

of the processes of plastic deformation. First, we review developed fracture model and developed model for 

isotropic damage formulation applied to the nano-scale domain space. Second, we study boundary value problem for 

particle interaction among part specimen using the implicit gradient model. Finally, we conduct test benchmarks to 

validate propositions and to show correctness of the proposed models. 
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1.1. Advantages of nanoscale analysis 

There is a promise of computational science to decompose macroscopic complexity into microscopic simplicity 

for the domain specific problem resolution. The payoff is the increase for the high spatial an time resolution of the 

computational efforts. This is achieved via simplified problem formulation and removal of the empirical correcting 

coefficients, which leads to a clear understanding of the dependencies, and enhances understanding of the evolution 

at a much higher fidelity level.  

1.2. Methodology 

Let us consider a bulk material undergoing a plastic deformation, in which case various processes take place, 

including but not limited to dislocation and deformation of material particles, size and form changes, and emergence 

of defects. We study material processes at small specimen scale. Moreover, to study the behavior of the material we 

employed simulation using nano-scale equipment.  

Because dislocations in the material are not uniform by definition, simulation should be performed for each block 

of material, but it’s computationally extensive due to high interconnection factor between edges in network, which 

can be built to represent the material. Yield stress at small specimen size is not well-defined. Phenomenology of 

plastic deformation based on the statistical properties is not well-studied. It is observed that fluctuation of stress-

strain is in response to damage of individual specimen. Irregular plastic response of submicron crystalline materials 

is conceived as a self-organizing phenomenon of strain avalanches. We present a statistical analysis of the 

fluctuating stress-strain response of individual chunks of metal. Main proposition is that fundamentally the stress-

strain dependency holds the key to other empirical aspects of the flow [13]. We wanted to perform analysis of 

plastic deformation and emerging damage effects to further expand possible applications of such technique, which 

allows diminishing needs for corrective modifications of the details and accounting for potential defects in the metal. 

2. Damage modeling 

Furthermore, in this contribution we use isogeometric finite elements to model damage formulations. The 

analysis based on the isogeometric models was introduced by Hughes [14] and has been applied to a variety of 

problems.  Their advantage includes relationship between geometry and solution space. To avoid mesh 

dependencies of the process we propose to relate the material properties to the element size. The proposed method is 

contained by mapping where an internal length scale can be introduced by a spatial smoothing function in the 

continuum formulation. Gradient approximations of this smoothing function have led to the development of damage 

models where an internal length scale is introduced through gradients of an equivalent strain field. 

In this work, we study mechanisms of formation of dislocations and their parameters. To accomplish this, we’re 

mapping macro model of plastic deformation to nano-scale particle. For the modeling, natural units should be 

introduced, such as velocity υ, strain γ, stress τ and dislocation density ρ to represent particle movements at 

specified scale. Let us consider potential modeling of fractures which can occur in the model based on the state of 

the part and each corresponding particle. 

2.1. Fracture modeling 

The damage models are used for continuum models to simulate physical defects arising in plastic deformation 

processes. The meshing of the model is proposed in an alternative way to adhere to the particle sizes. To avoid mesh 

dependencies we propose, based on the thoughts from [15], to relate material properties to the size of particle 

[16,17]. The model of gradient damage formulation, based on Taylor expansion is used to approximate to an 

integral, which derives from the two second-order PDEs and can be easily discretized because it is based on the C�-

continuous finite function.  

2.2. Isotropic damage formulation 
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We consider a body Ω ∈ ℝ
with N ∈ {1,2,3} and boundary ∂Ω where the displacement is denoted by u�x� ∈ ℝ
 

for a material point x ∈ Ω. Hence the assumption of the small displacement gradients resolved in form of 

infinitesimal strain tensor can be written as follows: 

 

 ��� = ���,�� = 12������� + ������� (1) 

 

The Cauchy stress tensor for the corresponding stress measure can be written as follows: 

 

  �!� ∈ ℝ"∗" (2) 

 

An external traction t̃& puts a pressure on the boundary ∂Ω'& ⊆ ∂Ω affects it and is calculated for tensor 

relationship between the Cauchy stress and infinitesimal strain tensor is expresses as: 

 

  �� = �1 − *�+��,-.,- (3) 

 

where ω ∈ [0,1] is scalar damage parameter, H – Hookean elasticity tensor for undamaged material (ω = 0�.The 

material loses its stiffness when the following holds (ω = 1�.  The summary of the process for steps 1 to N results 

into u&v& = ∑ u&v&
&56 . 

The local damage law which describes the emergence of the defect appearance during a history of deformation �k�,  which  is expressed as ω = ω�k�. The history parameter k evolves according to the formula based on Kuhn-

Tucker conditions: 

 

 8 ≤ 0, : ≥ 0, :8 = 0 (4) 

 

Non-local damage law is introduced by means of nonlocal equivalent strain η=�x� and the volume average of a 

local equivalent strain, η = η�ε� as follows: 

 

 ?̅�!� = A B�!, C�?�C�DCE∈FA B�!, C�DCE∈F
 (5) 

 

where g�x, y� is the weighting function calculated as: 

 

 B�!, C� = exp�−‖! − C‖L2MNL � (6) 

 

This model is known as nonlocal damage formulation where the local equivalent strain maps to strain tensor via a 

scalar.  While having major advantages, the disadvantage of this formulation from computational aspect is that it 

requires the computation of an integral for the evaluation of the constitutive behavior at every particle.   

The nonlocal equivalent strain can be approximated via Taylor expansion as follows: 
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 ?�C� = ?|E5P + �?�C�QE5P �C� − !�� + 12 �?�C��C�RE5P �C� − !��SC� − !�T+
> V��!� − C��W� 

(7) 

 

Assuming the solid volume stretches to infinity leads to the gradient approximation of equation 

 

 ?̅�!� − 12 MNL �
L?̅�!�L �!� + 18 MNY �Y?̅�!�L�!�L �!� − 148 MN[ �[?̅�!�L�!�L�!,L �!� +⋯
= ?�!� (8) 

 

The implicit gradient model that follows was adopted widely and is presented in detail below and used for defect 

modeling for the particles of the part. 

2.3. Implicit gradient particle damage modeling 

The implicit formulation required for the solution of a boundary value problem for a particle interaction. The 

nonlocal equivalent strain field, η=�x�, resulting boundary value problem for the third-order formulation, is evaluated 

using formula as follows: 

 

 

]̂
^̂_
^̂̂
` � ���!� = 0

ℒb?̅ = ? ∀! ∈ Ω
 ��d� = efg ∀! ∈ �Ωh���!i � �j?̅�!�…� = 0 ∀! ∈ �Ω, l ∈ {0,… , d − 2}
�� = �m� ∀! ∈ �Ωn�

 (9) 

 

where  t̃ is the predefined boundary traction and um  is the displacement. The precondition is that boundary forces 

are equivalent for all directional derivatives, i.e. 
oopq = rs oops . To solve the equation using Galerkin method, the same 

solution spaces are used for the displacement field and nonlocal equivalent plastic strain field. Those are S&u ⊂Hxy�Ω� and Sz{ ⊂ Hxy�Ω� respectively. Then the weak form of (9) can be formulated as follows: 

 

 

]̂_
^̀ S ��, |�,�n TF = �ẽ�, |�n�}F ∀|�n ∈ ~��
�?̅ − ?, |��F +��ℋj?̅,ℋj|?̅�F = 0b/L

j56
	 ∀|�{ ∈ ~�{  (10) 

 

To the discrete problem we applied Galerkin method [18], which formulated for the weak problem as follows: 

 

 

]̂_
^̀ S ��, |�,�n,�TΩ = Sẽ�, |�n,�T�Ω ∀|�n,� ∈ ~�n,�
S?̅ − ?, |�{,�TF + �Sℋj?̅,ℋj|�{,�TF = 0b/L

j56	
∀|�{,� ∈ ~�{,� (11) 
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where σ&�		– cachy stress tensor and σ&� ∈ V;	
 V –a Hilbert space; 

  η= –norm of nodes; 

 Ω	–problem space; 

 v&,��,�–weighting function. 

Using the function of NURBS as trial function {R&�x�}, the former results in a system �N + 1�n  as follows: 

 

 �8�ih,,n� = 8�Ph,,n� ∀�:,�� ∈ {1…d}⊗ {1…�}8�ih,,�{ = 0 ∀: ∈ {1…d}  (12) 

 

For the damage formulation for third-order problem, where n = 3, the linear operator ℋ� is written as follows 

 

 ℋW = MNW√48 �W�!��!��!, 
(13) 

 

Hence, for the six-order formulation using  (13) damage model can be calculated using the following formula: 

 

 

� = � MNL2 �?̅�!� �|
�{

�!� + MNY8 �L?̅�!��!� �L|�{�!��!� + MN[48 �W?̅�!��!��!, �W|�{�!��!��!, DΩF
	

bL
j56

	 (14) 

 

where corresponding fourth and six-order results can be extracted by ignoring the third and second-order spatial 

derivatives in the (14) above. To validate the developed method, the nano-deformation experiments have been 

conducted on an indenter. We applied developed method to the benchmark problems and evaluated principal 

metrics. Tests modes also included measurement of the flange buckling and grain measurement. To conduct 

multistep optimization process, principles outlined in [7] were applied. 

3. Benchmarks 

3.1. Numerical verifications 

The typical problem with parts formed using drawing is the buckling of the flange, which usually means the 

specimen is defective and micro-level voids are emerging near the deformation into buckling. Modeling of this 

phenomenon is done using steel sheet designed to undergone the stress test where stress is exceeding plasticity. 

The simulations to verify the described propositions were performed for the testing problems. We consider a 

model loaded in extraction as shown in Fig. 1. The 40 mm deep drawing was conducted on the model using tool 

with profile decreased. For each step, the characteristic values were calculated [13]. 
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Fig. 1. Schematic representation of a three-dimensional model loaded under pressure. 

The problem was formulated using Galerkin method for different number of elements, see Table 1 below. 

Table 1 Problem size and results 

Number of elements m 80 160 320 800 1600 

Number of nodes, n 90 170 340 880 1800 

Number of discontinuities 17 29 14 17 4 

 

Fig. 2. Oscillation of elements and number of discontinuities 

The finite element solution tends to oscillate with some frequency when pressure is applied and discontinuities to 

appear, unless the solution is stabilized, see Fig. 2.  Disadvantage of the stabilized solution is causing numerical 

dissipation, which decreases the accuracy [19]. To overcome this, we use spacetime-discontinuous Galerkin method, 

proposed in [20]. This method has lower probability for oscillation so that direct patch-by-patch advancing front is 

generated with linear computational complexity (cf. sec. 3.1, [19]). 

The results obtained during simulation suggest that only long-range interactions between dislocations are 

captured for the submicron level of plastic flow. 

3.2. Test 2: Numerical verifications of avalanches 

Stress-strain dependency can be derived for this model. It can also be observed that the avalanches are present in 

the model during the plastic flow simulation. Avalanche state can be derived as a norm of stress, i.e. 
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The simulations of plastic strain response measured to determine patterns of avalanche development during 

plastic deformation. 

 

Fig. 3. Model in avalanche state 

We’ve built the graph of the dependencies between the modeling step and norm of the stress for the model in 

avalanche state, see Fig. 3. Measurements were obtained for stress vs. plastic strain dependency and indicate strain 

avalanches stochastic propagation for different samples, which converges into dominating front. 

Furthermore, tail of avalanche velocity distribution comes from the system in avalanche state. The goal here is to 

minimize the effect of avalanches into form of the part, which improves quality of the product. 

In conclusion the correlation produces finite amplitude [17]. Then stress and velocity distribution must have 

reciprocal dependency. 

3.3. Test 3: Grain measurements of buckled particles 

The resulting material state was captured and the size of the grains was obtained using transmission electron 

microscope. We study the elastic-plastic behavior of the metal with the emphasis on the effects of microstructure.  

 

Fig. 4. Grain measurement 
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The force-displacement curves were obtained using the meshes. It is observed that with increased order of 

magnitude, the approximation of the result improved, Fig. 4. 

We can conclude that for submicron sizes the dependency between stress and strain holds and it is represented as 

smooth function with the representative points specific to a particular material. The theoretical similarity between 

strain response curves suggests that general behavior is captured for the nano-scale particle flow. 

4. Discussion 

4.1. Dynamics of dislocations  

It is rather difficult to measure deformations and hence dislocations directly in the modeled problem. The 

availability of the results is scarce and we performed modeled dislocation measurement from the experiment 

simulation. The strains were measured during the individual stress-controlled simulations. The results indicate 

presence of strain avalanches, which result in different deformation patterns for difference sample experiments. In 

the observation it was determined that there are many definitions for deformation and for strain. It is hard to 

introduce infinitely many versions and it’s difficult to determine one which constitutes an elastic relation. Natural 

assumptions can be made regarding correlation of dislocations. Previously [21] it was shown that stresses in the 

internal locations are distributed stochastically.  

4.2. Correlation between nanostructures and mechanical behavior 

It was observed that mechanical behavior observed through cold drawing confirms hypothesis when larger scale 

deformation can be projected to the nano-level deformation. Quasi-static stress-strain curves are retained for the 

strain of the grains, which conforms to our model and results for plastic deformations. 

4.3. Nanostructures and their evolution 

Traditional discreet approximations cannot capture localized deformation areas on the order of nanoscale 

characteristic lengths. Constitutive behavior at these significantly smaller scales is usually cannot be projected into 

macroscale average behavior. The important material behavior is difficult to explain including fracture and strength 

using conventional methods, but can be elaborated more clearly using proposed method. 

Presence of strain hardening can be explained through anisotropic properties of the modeled material. Dislocation 

pileup at grain boundaries is present near the areas affected by buckling. 

Non-uniform dislocation distribution between regions near grain boundary and the grain interior is emerging due 

to the non-uniform deformation between regions. We’ve employed the continuum theory which fully describes 

material using matrix representation and process parameters. The (ℋ�, η=�x�, v&,� ) describes inhomogeneity in the 

matrix. The damage models are used for continuum models to simulate the physical defects arising in plastic 

drawing processes were found applicable to the problem domain. 

Conclusion 

The nano-deformation has been examined in the context of plastic deformations. Assumed stress-strain 

formulation was extended to nano-scale and tested in large deformation and problems typically solved by finite 

elements. We adopted isogeometric projective formulation is response for the volumetric damage, without resort  to 

other techniques. The presented simulations show high predictability for characteristics formulated in other well-

known methods. 
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